Line Sweep Algorithms

Line Segments
Union of
rectangles
Convex hull
Summary

Robin Visser
IOI Training Camp
University of Cape Town

23 May 2015

Overview

Line Sweep
Algorithms
Robin Visser

Background
Examples
Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary
(1) Background
(2) Examples

Closest Pair
Line Segments
Union of rectangles
Convex hull
(3) Summary

Background

Line Sweep
Algorithms
Robin Visser

Background
Examples

Closest Pair

Line Segments
Union of
rectangles
Convex hull
Summary

- A line sweep algorithm is one that uses a conceptual sweep line to solve various problems in Euclidean space.
- The basic idea is that one imagines a line swept across the plane, stopping at certain points, whilst doing geometric operations on points in the immediate vicinity of the sweep line.
- Usually, the complete solution is available once the line has passed over all objects.

Background

Line Sweep
Algorithms
Robin Visser

- A line sweep algorithm is one that uses a conceptual sweep line to solve various problems in Euclidean space.
- The basic idea is that one imagines a line swept across the plane, stopping at certain points, whilst doing geometric operations on points in the immediate vicinity of the sweep line.
- Usually, the complete solution is available once the line has passed over all objects.

Background

Line Sweep
Algorithms
Robin Visser

- A line sweep algorithm is one that uses a conceptual sweep line to solve various problems in Euclidean space.
- The basic idea is that one imagines a line swept across the plane, stopping at certain points, whilst doing geometric operations on points in the immediate vicinity of the sweep line.
- Usually, the complete solution is available once the line has passed over all objects.

Closest pair problem

Line Sweep
Algorithms
Robin Visser
Background
Examples
Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

Problem

Given a set of n points, find a pair of points with the smallest distance between them

- Of course, one can do a brute force algorithm in $\mathrm{O}\left(n^{2}\right)$ time.
- A line sweep algorithm can reduce this to $O(n \log n)$.

Closest pair problem

Line Sweep
Algorithms
Robin Visser

Background
Examples
Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

Problem

Given a set of n points, find a pair of points with the smallest distance between them

- Of course, one can do a brute force algorithm in $\mathrm{O}\left(n^{2}\right)$ time.
- A line sweep algorithm can reduce this to $O(n \log n)$

Closest pair problem

Line Sweep
Algorithms
Robin Visser
Background
Examples
Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

Problem

Given a set of n points, find a pair of points with the smallest distance between them

- Of course, one can do a brute force algorithm in $\mathrm{O}\left(n^{2}\right)$ time.
- A line sweep algorithm can reduce this to $\mathrm{O}(n \log n)$.

Algorithm

Line Sweep
Algorithms
Robin Visser

Background
Examples
Closest Pair Line Segments Union of rectangles Convex hull

Summary

- Sort all points by their x-coordinate and keep track of best distance so far as h
- Suppose we've processed points 1 to $k-1$
- We process point k and maintain a set of already processed points whose x coordinates and within h of point k
- We add the point being processed to the set and remove points from the set when we move one (or when h is decreased)
- The set itself is ordered by y-coordinate.
- We then simply check for points within the range: $y_{k}-h$ to $y_{k}+h$ and update h if a new best is found.

Algorithm

Line Sweep
Algorithms
Robin Visser

Background
Examples
Closest Pair Line Segments Union of rectangles
Convex hull
Summary

- Sort all points by their x-coordinate and keep track of best distance so far as h
- Suppose we've processed points 1 to $k-1$:
- We process point k and maintain a set of already processed points whose x coordinates and within h of point k
- We add the point being processed to the set and remove points from the set when we move one (or when h is decreased)
- The set itself is ordered by y-coordinate.
- We then simply check for points within the range: $y_{k}-h$ to $y_{k}+h$ and update h if a new best is found.

Algorithm

Line Sweep
Algorithms
Robin Visser

Background
Examples
Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

- Sort all points by their x-coordinate and keep track of best distance so far as h
- Suppose we've processed points 1 to $k-1$:
- We process point k and maintain a set of already processed points whose x coordinates and within h of point k.
- We add the point being processed to the set and remove points from the set when we move one (or when h is decreased)
- The set itself is ordered by y-coordinate.
- We then simply check for points within the range: $y_{k}-h$ to $y_{k}+h$ and update h if a new best is found.

Algorithm

Line Sweep
Algorithms
Robin Visser
Background
Examples

Closest Pair

Line Segments

Union of
rectangles
Convex hull
Summary

- Sort all points by their x-coordinate and keep track of best distance so far as h
- Suppose we've processed points 1 to $k-1$:
- We process point k and maintain a set of already processed points whose x coordinates and within h of point k.
- We add the point being processed to the set and remove points from the set when we move one (or when h is decreased)
- The set itself is ordered by y-coordinate.
- We then simply check for points within the range: $y_{k}-h$ to $u_{k}+h$ and update h if a new best is found.

Algorithm

- Sort all points by their x-coordinate and keep track of best distance so far as h
- Suppose we've processed points 1 to $k-1$:
- We process point k and maintain a set of already processed points whose x coordinates and within h of point k.
- We add the point being processed to the set and remove points from the set when we move one (or when h is decreased)
- The set itself is ordered by y-coordinate.
- We then simply check for points within the range: $y_{k}-h$ to $y_{k}+h$ and update h if a new best is found.

Algorithm

- Sort all points by their x-coordinate and keep track of best distance so far as h
- Suppose we've processed points 1 to $k-1$:
- We process point k and maintain a set of already processed points whose x coordinates and within h of point k.
- We add the point being processed to the set and remove points from the set when we move one (or when h is decreased)
- The set itself is ordered by y-coordinate.
- We then simply check for points within the range: $y_{k}-h$ to $y_{k}+h$ and update h if a new best is found.

Code

Line Sweep
Algorithms
Robin Visser

Background

Examples

Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

Pseudocode:

```
sort(p, p+n, xcomp)
set<ycomp> box
box.insert(p[0])
int left = 0
for i in range(1, n):
    while (left < i) and (p[i].x - p[left].x > h):
        box.erase(p[left])
        left++
        for (it = box[p[i].y-h], it < box[p[i].y+h]):
        h = min(h, dist(p[i], it))
    box.insert(p[i])
return h
```


Time Complexity

- For each point, removal from the set is $\mathrm{O}(\log n)$. Each point is only removed once, giving $\mathrm{O}(n \log n)$ in total for removal.
- We can extract the required range from the set in $\mathrm{O}(\log n)$ time (for $\mathrm{C}++$, one can use the lower_bound function on a set)
- Within this range there can only be $O(1)$ elements, since any two points in the set has distance at least h
- The search for each point is therefore at most $O(\log n)$ giving a total time of $O(n \log n)$

Time Complexity

Line Sweep
Algorithms
Robin Visser

Background

Examples

Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

- For each point, removal from the set is $\mathrm{O}(\log n)$. Each point is only removed once, giving $\mathrm{O}(n \log n)$ in total for removal.
- We can extract the required range from the set in $\mathrm{O}(\log n)$ time (for $\mathrm{C}++$, one can use the lower_bound function on a set)
- Within this range there can only be $O(1)$ elements, since any two points in the set has distance at least h.
- The search for each point is therefore at most $O(\log n)$, giving a total time of $O(n \log n)$

Time Complexity

- For each point, removal from the set is $\mathrm{O}(\log n)$. Each point is only removed once, giving $\mathrm{O}(n \log n)$ in total for removal.
- We can extract the required range from the set in $\mathrm{O}(\log n)$ time (for $\mathrm{C}++$, one can use the lower_bound function on a set)
- Within this range there can only be $\mathrm{O}(1)$ elements, since any two points in the set has distance at least h.
- The search for each point is therefore at most $O(\log n)$, giving a total time of $O(n \log n)$

Time Complexity

- For each point, removal from the set is $\mathrm{O}(\log n)$. Each point is only removed once, giving $\mathrm{O}(n \log n)$ in total for removal.
- We can extract the required range from the set in $\mathrm{O}(\log n)$ time (for $\mathrm{C}++$, one can use the lower_bound function on a set)
- Within this range there can only be $\mathrm{O}(1)$ elements, since any two points in the set has distance at least h.
- The search for each point is therefore at most $\mathrm{O}(\log n)$, giving a total time of $\mathrm{O}(n \log n)$

Line segment intersection

Line Sweep
Algorithms
Robin Visser

Background
Examples
Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

Problem

Given a set of n vertical and horizontal line segments, report all intersection points among them

- Again, a trivial brute force algorithm runs in $\mathrm{O}\left(n^{2}\right)$ time.
- A line sweep algorithm can reduce this to $\mathrm{O}(n \log n)$

Line segment intersection

Line Sweep
Algorithms
Robin Visser

Background
Examples
Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

Problem

Given a set of n vertical and horizontal line segments, report all intersection points among them

- Again, a trivial brute force algorithm runs in $\mathrm{O}\left(n^{2}\right)$ time.
- A line sweep algorithm can reduce this to $\mathrm{O}(n \log n)$

Line segment intersection

Line Sweep
Algorithms
Robin Visser
Background
Examples
Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

Problem

Given a set of n vertical and horizontal line segments, report all intersection points among them

- Again, a trivial brute force algorithm runs in $\mathrm{O}\left(n^{2}\right)$ time.
- A line sweep algorithm can reduce this to $\mathrm{O}(n \log n)$.

Algorithm

Line Sweep
Algorithms
Robin Visser

Background
Examples

Closest Pair

Line Segments
Union of
rectangles
Convex hull
Summary

- Make a sorted list of all the x-coordinates at which some event happens (either a vertical line, or start or end of a horizontal line)
- We iterate through the events:
- We keep a set of current horizontal lines (sorted by y-coordinate). We simply add or remove from the set whenever we hit the start or end of a horizontal line.
- When we come across a vertical line, we do a range search in our set to obtain intersections.

Algorithm

Line Sweep
Algorithms
Robin Visser

Background

Examples

Closest Pair

Line Segments
Union of
rectangles
Convex hull
Summary

- Make a sorted list of all the x-coordinates at which some event happens (either a vertical line, or start or end of a horizontal line)
- We iterate through the events:
- We keep a set of current horizontal lines (sorted by y-coordinate). We simply add or remove from the set whenever we hit the start or end of a horizontal line.
- When we come across a vertical line, we do a range search in our set to obtain intersections.

Algorithm

Line Sweep
Algorithms
Robin Visser

Background

Examples

Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

- Make a sorted list of all the x-coordinates at which some event happens (either a vertical line, or start or end of a horizontal line)
- We iterate through the events:
- We keep a set of current horizontal lines (sorted by y-coordinate). We simply add or remove from the set whenever we hit the start or end of a horizontal line.
- When we come across a vertical line, we do a range search in our set to obtain intersections.

Algorithm

- Make a sorted list of all the x-coordinates at which some event happens (either a vertical line, or start or end of a horizontal line)
- We iterate through the events:
- We keep a set of current horizontal lines (sorted by y-coordinate). We simply add or remove from the set whenever we hit the start or end of a horizontal line.
- When we come across a vertical line, we do a range search in our set to obtain intersections.

Code

Line Sweep
Algorithms
Robin Visser

Background
Examples
Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

Pseudocode:

```
sort(events, events+e)
set s
for i in range(e):
    c = events[i]
    if c is starting point:
        s.insert(c.p1)
```

 else if end point:
 s.erase (c.p2)
 else:
 for (it = c.p1, it < c.p2):
 \#Intersection at \(c\) and \(s[i t]\)

Time Complexity

Line Sweep
Algorithms

Robin Visser

Background
Examples
Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

- Using a set, insertion and removal is done in $\mathrm{O}(\log n)$ time.
- Finding the required range is $O(\log n)$, plus an additional $\mathrm{O}(I)$ to note the I intersections.
- Total time is $\mathrm{O}(n \log n+I)$ time for I intersections. Just counting the intersections can be done in $\mathrm{O}(n \log n)$ time using an augmented binary tree structure (store number of nodes)
- Algorithm can be generalised for arbitrary line segments (use a priority queue to handle events)

Time Complexity

Line Sweep
Algorithms
Robin Visser

Background

Examples

Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

- Using a set, insertion and removal is done in $\mathrm{O}(\log n)$ time.
- Finding the required range is $\mathrm{O}(\log n)$, plus an additional $\mathrm{O}(I)$ to note the I intersections.
- Total time is $O(n \log n+I)$ time for I intersections. Just counting the intersections can be done in $\mathrm{O}(n \log n)$ time using an augmented binary tree structure (store number of nodes)
- Algorithm can be generalised for arbitrary line segments (use a priority queue to handle events)

Time Complexity

Line Sweep
Algorithms
Robin Visser

Background

Examples

Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

- Using a set, insertion and removal is done in $\mathrm{O}(\log n)$ time.
- Finding the required range is $\mathrm{O}(\log n)$, plus an additional $\mathrm{O}(I)$ to note the I intersections.
- Total time is $\mathrm{O}(n \log n+I)$ time for I intersections. Just counting the intersections can be done in $\mathrm{O}(n \log n)$ time using an augmented binary tree structure (store number of nodes)
- Algorithm can be generalised for arbitrary line segments (use a priority queue to handle events)

Time Complexity

- Using a set, insertion and removal is done in $\mathrm{O}(\log n)$ time.
- Finding the required range is $\mathrm{O}(\log n)$, plus an additional $\mathrm{O}(I)$ to note the I intersections.
- Total time is $\mathrm{O}(n \log n+I)$ time for I intersections. Just counting the intersections can be done in $\mathrm{O}(n \log n)$ time using an augmented binary tree structure (store number of nodes)
- Algorithm can be generalised for arbitrary line segments (use a priority queue to handle events)

Area of the union of rectangles

Line Sweep
Algorithms
Robin Visser

Background

Examples

Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

Problem

Given a set of rectangles, calculate the area of its union.

- Again, we use a line sweep, keeping track of the important events with an active set

Area of the union of rectangles

Line Sweep
Algorithms
Robin Visser

Background

Examples

Closest Pair

Line Segments

Union of
rectangles
Convex hull
Summary

Problem

Given a set of rectangles, calculate the area of its union.

- Again, we use a line sweep, keeping track of the important events with an active set.

Algorithm

Line Sweep
Algorithms
Robin Visser

Background
Examples
Closest Pair Line Segments

- As before, we keep a sorted list of events which we iterate through, namely the left and right edge of our rectangles.
- When we cross a left edge, the rectangle is added to the set, and removed once we cross over the right edge.
- We then do another line sweep running top-down within our active set to determine the total length of the main line sweep which is cut by rectangles.
- Multiplying this by the difference in x-coordinates when we step to the next event, and totalling, gives us the total union area
- Using a Boolean array to store our active set will result in $\mathrm{O}\left(n^{2}\right)$ time. This can be improved to $\mathrm{O}(n \log n)$ time using binary tree manipulation tricks within the inner loop

Algorithm

Line Sweep
Algorithms
Robin Visser

Background

Examples

Closest Pair

Line Segments

Union of
rectangles
Convex hull
Summary

- As before, we keep a sorted list of events which we iterate through, namely the left and right edge of our rectangles.
- When we cross a left edge, the rectangle is added to the set, and removed once we cross over the right edge.
- We then do another line sweep running top-down within our active set to determine the total length of the main line sweep which is cut by rectangles.
- Multiplying this by the difference in x-coordinates when we step to the next event, and totalling, gives us the total union area

Using a Boolean array to store our active set will result in $\mathrm{O}\left(n^{2}\right)$ time. This can be improved to $\mathrm{O}(n \log n)$ time using binary tree manipulation tricks within the inner loop

Algorithm

Line Sweep
Algorithms
Robin Visser

Background
Examples
Closest Pair

- As before, we keep a sorted list of events which we iterate through, namely the left and right edge of our rectangles.
- When we cross a left edge, the rectangle is added to the set, and removed once we cross over the right edge.
- We then do another line sweep running top-down within our active set to determine the total length of the main line sweep which is cut by rectangles.
- Multiplying this by the difference in x-coordinates when we step to the next event, and totalling, gives us the total
union area
Using a Boolean array to store our active set will result in $\mathrm{O}\left(n^{2}\right)$ time. This can be improved to $\mathrm{O}(n \log n)$ time using binary tree manipulation tricks within the inner loop.

Algorithm

- As before, we keep a sorted list of events which we iterate through, namely the left and right edge of our rectangles.
- When we cross a left edge, the rectangle is added to the set, and removed once we cross over the right edge.
- We then do another line sweep running top-down within our active set to determine the total length of the main line sweep which is cut by rectangles.
- Multiplying this by the difference in x-coordinates when we step to the next event, and totalling, gives us the total union area.
- Using a Boolean array to store our active set will result in $\mathrm{O}\left(n^{2}\right)$ time. This can be improved to $\mathrm{O}(n \log n)$ time using binary tree manipulation tricks within the inner loop.

Algorithm

- As before, we keep a sorted list of events which we iterate through, namely the left and right edge of our rectangles.
- When we cross a left edge, the rectangle is added to the set, and removed once we cross over the right edge.
- We then do another line sweep running top-down within our active set to determine the total length of the main line sweep which is cut by rectangles.
- Multiplying this by the difference in x-coordinates when we step to the next event, and totalling, gives us the total union area.
- Using a Boolean array to store our active set will result in $\mathrm{O}\left(n^{2}\right)$ time. This can be improved to $\mathrm{O}(n \log n)$ time using binary tree manipulation tricks within the inner loop.

Convex hull

Line Sweep
Algorithms
Robin Visser

Background
Examples
Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

Problem

Given a set of n points in the plane, find the convex hull.

- A brute force will run in $\mathrm{O}\left(n^{2}\right)$ time
- A Graham scan is faster. Does sorting by angle and runs in $\mathrm{O}(n \log n)$ time.
- Can be expensive to compute angles and may get numeric errors.
- A simpler solution is to simply sort by x-coordinate and sweep line. (Andrew's algorithm)

Convex hull

Line Sweep
Algorithms
Robin Visser

Background
Examples
Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

Problem

Given a set of n points in the plane, find the convex hull.

- A brute force will run in $\mathrm{O}\left(n^{2}\right)$ time.
- A Graham scan is faster. Does sorting by angle and runs in $\mathrm{O}(n \log n)$ time.
- Can be expensive to compute angles and may get numeric errors.
- A simpler solution is to simply sort by x-coordinate and sweep line. (Andrew's algorithm)

Convex hull

Line Sweep
Algorithms
Robin Visser

Background
Examples
Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

Problem

Given a set of n points in the plane, find the convex hull.

- A brute force will run in $\mathrm{O}\left(n^{2}\right)$ time.
- A Graham scan is faster. Does sorting by angle and runs in $\mathrm{O}(n \log n)$ time.
- Can be expensive to compute angles and may get numeric errors.
- A simpler solution is to simply sort by x-coordinate and sweep line. (Andrew's algorithm)

Convex hull

Line Sweep
Algorithms
Robin Visser

Background
Examples
Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

Problem

Given a set of n points in the plane, find the convex hull.

- A brute force will run in $\mathrm{O}\left(n^{2}\right)$ time.
- A Graham scan is faster. Does sorting by angle and runs in $\mathrm{O}(n \log n)$ time.
- Can be expensive to compute angles and may get numeric errors.
- A simpler solution is to simply sort by x-coordinate and sweep line. (Andrew's algorithm)

Convex hull

Line Sweep
Algorithms
Robin Visser

Background
Examples
Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

Problem

Given a set of n points in the plane, find the convex hull.

- A brute force will run in $\mathrm{O}\left(n^{2}\right)$ time.
- A Graham scan is faster. Does sorting by angle and runs in $\mathrm{O}(n \log n)$ time.
- Can be expensive to compute angles and may get numeric errors.
- A simpler solution is to simply sort by x-coordinate and sweep line. (Andrew's algorithm)

Algorithm

Line Sweep
Algorithms
Robin Visser

Background
Examples
Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

- We compute the convex hull in two parts: the upper hull and the lower hull.
- For the upper hull, we sort all points by their x-coordinate and incrementally add points in sorted order, building up the hull.
- We keep track of the last three points. If it is concave, we discard the second last point (we know it's not on the hull) and repeat the process.
- This is essentially the same procedure as a Graham scan, except sorted by x-coordinate instead of angle.
- The lower hull is done in a similar manner.

Algorithm

Line Sweep
Algorithms
Robin Visser

Background
Examples

Closest Pair

Line Segments
Union of
rectangles
Convex hull
Summary

- We compute the convex hull in two parts: the upper hull and the lower hull.
- For the upper hull, we sort all points by their x-coordinate and incrementally add points in sorted order, building up the hull.
- We keep track of the last three points. If it is concave, we discard the second last point (we know it's not on the hull) and repeat the process.
- This is essentially the same procedure as a Graham scan, except sorted by x-coordinate instead of angle.
- The lower hull is done in a similar manner.

Algorithm

Line Sweep
Algorithms
Robin Visser

Background

Examples

Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

- We compute the convex hull in two parts: the upper hull and the lower hull.
- For the upper hull, we sort all points by their x-coordinate and incrementally add points in sorted order, building up the hull.
- We keep track of the last three points. If it is concave, we discard the second last point (we know it's not on the hull) and repeat the process.
- This is essentially the same procedure as a Graham scan except sorted by x-coordinate instead of angle.
- The lower hull is done in a similar manner.

Algorithm

Line Sweep
Algorithms

- We compute the convex hull in two parts: the upper hull and the lower hull.
- For the upper hull, we sort all points by their x-coordinate and incrementally add points in sorted order, building up the hull.
- We keep track of the last three points. If it is concave, we discard the second last point (we know it's not on the hull) and repeat the process.
- This is essentially the same procedure as a Graham scan, except sorted by x-coordinate instead of angle.
- The lower hull is done in a similar manner.

Algorithm

Line Sweep
Algorithms

- We compute the convex hull in two parts: the upper hull and the lower hull.
- For the upper hull, we sort all points by their x-coordinate and incrementally add points in sorted order, building up the hull.
- We keep track of the last three points. If it is concave, we discard the second last point (we know it's not on the hull) and repeat the process.
- This is essentially the same procedure as a Graham scan, except sorted by x-coordinate instead of angle.
- The lower hull is done in a similar manner.

Code

Line Sweep
Algorithms
Robin Visser

Background
Examples
Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

Pseudocode:

```
sort(points, points+n, xcomp)
u = [], l = []
for i in range(1, n):
    while l[-2], l[-1], points[i] makes CW turn:
        l.pop
        l.append(points[i])
```

for i in range $(n, 1)$:
while $u[-2], u[-1]$, points [i] makes CW turn:
u.pop
u.append(points[i])
return concat(l, u)

Summary

Line Sweep
Algorithms
Robin Visser

Background
Examples
Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

- Line sweep algorithms can be extremely powerful and can be used to solve a variety of problems.
- There are numerous other more advanced problems such as Delaunay triangulations and minimum spanning trees for certain metrics that can be solved using line sweep techniques.

Summary

Line Sweep
Algorithms
Robin Visser

Background

Examples

Closest Pair
Line Segments
Union of
rectangles
Convex hull
Summary

- Line sweep algorithms can be extremely powerful and can be used to solve a variety of problems.
- There are numerous other more advanced problems such as Delaunay triangulations and minimum spanning trees for certain metrics that can be solved using line sweep techniques.

